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THE LONGITUDINAL LAMINAR FLOW OF A LIQUID IN A BUNDLE OF RODS
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Analog and digital methods have been applied to the problem of the
longitudinal flow of a viscous incompressible liquid through bundles
of rods in square or triangular array.

The active zone in nuclear reactors is frequently
made up of cylindrical heat-evolving elements which
are streamlined by a longitudinal flow of a heat car-
rier, The calculation of the characteristics for the
laminar flow of a liquid in such a system is of practi-
cal interest; however, the literature contains very
few references devoted to this problem.

Here we will present the results obtained in studies
of the laminar flow of a liquid in the space between the
heat evolving rods positioned at the corners of an equi~
lateral triangle or square, The problem of determining
the velocity fields in the liquid has been resolved both
by analog and digital methods.

The equation describing the laminar motion of the
liquid has the form
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¥ \ 0x? oy? 0z (1)

with the boundary condition
“() =0, 2
where T is the liquid-solid interface.

When the right-hand member of Eq. (1) is constant,
it can be simulated with ac current through the use of
a flat capacitor [1].

The investigation was carried out on the model of
an elementary symmetry cell ABCDA (Fig, 1). In
measuring the potentials on the model, we divided the
entire investigated region into a rather large number
of elementary units. Depending on the relative pitch
h, the side of such an elementary unit was 0.01-0,02
of the rod radius. The value of the potential was deter-
mined at the center of each unit. The mean value was
determined in a manner as to account for the specific
weight of incomplete boundary unit cells. The number
of elementary units within the symmetry cell ABCDA
amounted to several hundred.

A finite-difference method was used for the numeri-
cal solution of Eq, (1). The calculation was carried
out in cylindrical coordinates. The corner spacing
ranged from 1°40' for dense packing to 5° for a system
with a pitch of 1.5, and along the radius it ranged from
Ar = 0,025R for h = 1,0 to Ar = 0.125R for h = 1,5.

The results of the solution and comparison with
other data are shown in Figs. 2-4,

Figure 2 shows the distribution of velocities over
the symmetry line AF (or, what is the same, along
the line ABC in Fig. 1) for rods in triangular array.
The agreement between the results of analog and digi-

tal calculation is excellent, the divergence not exceed~
ing several percent, Moreover, Fig. 2 shows the re-
sult of the numerical solution for h = 1,0 [10], which
is also in good agreement with the authors' data.
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Fig, 1, Arrangement of rods in periodic
array; a) triangular arrangement; b)
square arrangement: c) typical element,

One of the earliest theoretical solutions for the
problem under consideration in the case of rods in
square array was offered by Emersleben [2]., This
is an approximate solution, and boundary condition
(2) is satisfied only with some error. The Emers-
leben solution is exact for flow in the space between
rods whose lateral cross section over a great portion
of the flow is somewhat compressed in the direction
of the rod centers. This effect is all the more pro-
nounced the smaller the relative spacing of the system.

For a dense packing, the maximum velocity found
from the analytical solution [2] is greater by a factor
of approximately two than the corresponding velocity
obtained by analog procedures. This divergence is a
consequence of the assumptions made in the solution
of the problem. For a spacing h = 1,5, the analytical
solution differs insignificantly from that found by the
analog method,

For circular channels, the calculation of the resis-
tance factor proceeds with the use of the formula A =
= 64/Re, s0 that we can present the friction coefficient
for the case of laminar flow in rod bundles in the form

64
A=A — . 3
Re (3)
The coefficient A as a function of spacing [pitch] and
the type of array is shown in Fig., 3. In processing
these results, we chose the hydraulic diameter of the
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Fig. 2. Velocity distribution over the symmetry line ABF for triangular

arrangement of rods: 1-5) electric simulation for h = 1.0; 1.1; 1.2;

1.3: 1.5; 6-10) numerical solution for b = 1.0; 1.1; 1.2; 1.3; 1.5; 11)
numerical solution [10] for h = 1.0.
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Fig. 3. Factor A versus pitch: 1, 2) electric simulation

for triangular and square lattices; 3) numerical value, tri-

angular lattice; 4) experiment [4]; 5, 6, T) experiment[5],

Re = 1270, 1610, 2000, triangular lattice; 8) experiment
[5], Re = 2300, square lattice.
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Fig. 4, Hydraulic resistance versus porosity: 1
2) electric simulation, triangular, and square
arrangement of rods (m = 6, m = 4); 3, 4) an-
alytical solution (m = 6; m = 4); 5, 6) experi~
ments [4] (m = 6, m = 4); 7) experiments [4],
chaotic arrangement of rods; 8) according to
"Heat Transfer Manuals” [9] for m = 6; 9) an-
nular flow, calculation according to formula
(8); 10} solution [2], calculation with respect
to true porosity of system of deformed rods;
11) solution [2], calculation with respect to
fictitious porosity of rod system with radius

R = 0D (Fig. 1),
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system as the decisive dimension. The resistance fac-
tor for the triangular array-—found by numerical solu-
tion of the equation (curve 3 in Fig, 3)—lies higher
than the data derived from the analog method because
of the error in the numerical method., However, in

the case of dense packing we find that the resistance
factors determined by analog and numerical methods
are in agreement.

Let us compare these results with those obtained
experimentally. Reference [4] cites the results from
an experimental determination of the resistance fac-
tor in the case of a laminar flow of air parallel to
cylindrical surfaces. For densely packed rods in
square array, according to [4]) we have A = 0.414,
which differs little from the result (A = 0.40) given by
the analog method. The authors of [11]—solving the
problem numerically—for these same conditions ob-
tained a value of A = 0.406.

For a triangular rod array the author of [4] derived
values of A = 0,403 and A = 0,410, which is approxi-
mately 20% lower than the values achieved by the ana-
log and numerical methods. The authors know of other
experiments carried out with water [5]. Figure 3 shows
the results of these experiments for a triangular rod
array. The data of [5] are higher by a factor of 2~2.5
than the corresponding results of the numerical calcu-
lation, the analog calculation, and the experiments
with air {4], and this divergence increases as the Re
number grows. It is possible that in the experiments
described in [5] the flow regime was not laminar, and
this could lead to an exaggeration of the resistance
factor. The Reynolds number calculated from the hy-
draulic diameter ranges in [5] from 1270 to 1300,
while in the experiments of [4] it varies within limits
of 10 to 100. It can therefore be assumed that the flow
in reference [4] was stable and laminar.

For practical calculations and to compare the re-
sults from triangular and square rod arrays, it is
more convenient to give the hydraulic resistance data
in the form of a dimensionless pressure difference,
referred to a unit of liquid flow rate., We have taken
the porosity e of the system as the independent variable,
this quantity representing the ratio of the cross-sec-
tional area to the over-all area occupied by the liquid
and the rods. For convenience in comparing the frian-
gular and square rod arrays, we have referred the
pressure difference to the flow rate for a single rod.

Curves 3 and 4 in Fig., 4 show the results of an approx-

imate analytical solution [3], which has been derived
by a method of discrete satisfaction of the boundary
conditions, the application of this method having been
treated in[6,7]. We see that the analog solution and the
analytical solution of [3] agree. For a porosity above

£ = 0.5 the pressure difference for the triangular and
square rod arrays becomes identical. The Emersleben
solution (curves 10 and 11) yields lowered results, *

The experimental data of Sullivan [4] agree with
the analog method only for densely packed square and

*Data taken from [8].
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triangular arrays, For higher porosity values, the
experiments are smaller than the analog calculations
by factors of one-and-a-half to two, One of the factors
responsible for this divergence is the random position-
ing of the rods in the Sullivan experiment, With this
array, local variations in the porosity of the material
are unavoidable, and the reduction in the liquid flow
rate in the restricted regions is more than offset by
the increase in the flow rate through the region exhib-
iting greater porosity.

The authors of the Handbook of Heat Transfer (9)
recommend the use of the following relationship to
calculate the hydraulic resistance for the laminar
flow in the intertube space:

ARe=121. {4)

We see from Fig. 4 that formula (4) yields exag-
gerated values for the pressure difference when the
pitch is small, and exaggerated values when the pitch
is large, The calculation shows that the result is exag-
gerated by a factor of almost 5 for a dense packing,
With a pitch range from h = 1,2 to h = 1.8 relationship
(4) yields an error of +20%.

The analytical solution for the one-dimensional
problem of longitudinal streamlining of the rods can
be used as an approximation formula to calculate the
resistance factor and the pressure difference. It is
assumed in this solution that the velocity is a function
exclusively of the radius and is independent of the
angle, It is also assumed that the symmetry line at
which the velocity gradient vanishes passes along a
circle at a distance a from the rod center, so that the
area of the ring between the rod and this circle is
equal in magnitude to the cross-sectional area referred
to a single rod in a real system. The analytical solu-
tion yields the following expression for the pressure
difference:

(—opa) Rt 4(1 —s) 5
= ; ,
*q P (ln —8—82/2)
l—e )
where
2 2 2
g t@—nR ., R (6)
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The relationship between the porosity and the pitch is
given by
1 Tt

tg —.
mh? gm

(7)

ga= 1—

To analyze the nature of the flow and to evaluate
the interaction between the rods, we have determined
the distribution of the tangential stresses 7 over the
circumference of the rod, Let the distribution of the
potential on the model along the arc r = ap, be v(iem,?).
The distribution of the tangential stresses over the
circumference of the rod can then be derived from the
analytical solution of Eq. (1) by the method of separa-
tion of variables:

T(R, @)t (R) =
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The results of the simulation, reduced in accor-
dance with formula (8), are in good agreement with
the analytical solution [3],

The calculation shows that if the rods are positioned
close to each other they exert significant influence
on each other. A change in the tangential stresses in
terms of the angle results in the case of a square
array in pressure differences that are greater than
in the case of a triangular array.

NOTATION

p is the pressure; g is the flow rate per rod; Re is
the Reynolds number; u is the local velocity; u is the
mean velocity; X and y are the transverse coordinates;
z is the longitudinal coordinate; y is the dynamic vis-
cosity; p is the dimensionless instantaneous radius.
Subscripts: sq is the square arrangement of rods; m
is the model; tr is the triangular arrangement of rods.
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